THE VILLAGE INTERNATIONAL SCHOOL THODUPUZHA

SECOND MODEL EXAMINATION 2023-24 APPLIED MATHEMATICS - 241

CLASS : XII DATE: 08-01-2024 TIME : 3 HRS. MAXIMUM MARKS: 80

GEN	ERAL INSTRUCTIONS:					
(a)	This question paper consists of 38 questions divided into five sections					
	A, B, C, D and E.					
(b)	Section-A has18 MCQs and 2 Assertion-Reason based questions of					
	one mark each (Q1 to Q 20).					
(c)	Section-B has 5 questions of two marks each (Q 21 to Q 25).					
(d)	Section-C has 6 questions of three marks each (Q 26 to Q 31).					
(e)	Section-D has 4 questions of five marks each (Q 32 to Q 35).					
(f)	Section- E comprises of 3 Case-study questions of four marks each					
	(Q 36 to Q 38).					
(g)	There is no overall choice. However, internal choice has been provided					
	in some questions.					
1.	A man can row 7.5 km/h in still water. if the stream is flowing at the rate of 1.5					
	km/hr, it takes him 50mins to row to a place and return. How far is the place?					
2	a. 3km b. 2km c. 4km d. 2.5km					
Ζ.	A matrix A of order 3x3 has determinant 5 what is the value of $ 3A $?					
٦	While determining the intervals where a function $f(x)$ having domain $(-1, \infty)$					
5.	is increasing to student found that $f'(x) = \frac{(x)^2}{(x)^2}$. Which of the following					
	is increasing, a student round that $\Gamma(x) = \frac{1}{(2+x)^2(x+1)}$. Which of the following					
	statement is correct?					
	a. This always increasing in (-1, ∞) b. This always decreasing in (-1, ∞)					
	c. Its always increasing in its domain except at $x = 0$					
4	The expected value of a discrete random variable x' is given by					
т.	The expected value of a discrete random valuable x is given by					
	a) $P(x)$ b) $\Sigma P(x)$ c) $\Sigma x P(x)$ d) 1					
5.	The central limit theorem states that if the sample size					
	a) increases sampling distribution must approach normal distribution					
	b) decreases then the sample distribution must approach normal distribution					
	c) increases then the sampling distribution much approach an exponential					
	distribution					
	d) decreases then the sampling distribution much approach an exponential					
6	Increase in number of natients in the hospitals due to heat stroke is a					
0.	a. cyclical trend b. secular trend c. irregular trend d. seasonal trend					
7.	If the cash equivalent of a perpetuity of ₹1200 pavable at the end of each					
	quarter is					

	₹ 96,000, then the rate of interest convertible quarterly. a. 4% b. 5% c. 5.5% d. 6.5%
8.	For an L.P.P. the objective function is $Z = x = 20$ 400x + 300y, and the feasible region determined by a set of constraints (linear inequations) is shown in the graph. (0, 200) (20, 180)
	Find the coordinates at which the objective function is maximum. (a) $(20, 0)$ (b) $(40, 0)$ (c) $(40, 160)$ (d) $(20, 180)$ (20, 0) (20, 0) (20, 0)
9.	In a 50m race A can give a start of 5m to B and a start of 14 m to C. In the same race how much start can B give to C? a. 9 m b.10 m c. 12 m d.11 m
10.	If $A = \begin{pmatrix} 5 & x \\ y & 0 \end{pmatrix}$ and $A = A'$ then (a) $x = 0, y = 5$ (b) $x = y$ (c) $x + y = 5$ (d) $x - y = 5$
11.	It is given that at $x = 1$, the function $f(x) = x^3 - 12x^2 + kx + 7$ attains a maximum value, then the value of k is a. 10 b. 12 c. 21 d. 13
12.	If the probability that a bomb dropped from a place will strike the target is 60% and if 10 bombs are dropped, then the respective values of mean and variance is a) 0.6, 0.24 b) 6, 2.4 c) 0.4, 0.16 d) 4, 1.6
13.	For a Poisson Distribution, if mean = 1, then P(X = 1) is ? a) $\frac{1}{e}$ b) e c)1 d) can't be determined
14.	The interest rate per year is 6% and the compounding occurs every monththen interest rate per compounding period isa. 0.06b. 0.005c. 0.006d. 0.05
15.	Consider the following system of linear inequalities: $2x + y \le 10$, $x + 3y \le 15$, $x, y \ge 0$ If the corner points of the feasible region are $(0, 0)$, $(5, 0)$, $(3, 4)$ and $(0, 5)$. Let $Z = p x + q y$, where p, q > 0. Condition on p and q, so that the maximum value of Z occurs at both $(3, 4)$ and $(0, 5)$ is: a. p = q b. p = 2 q c. p = 3q d. q = 3p
16.	Tea worth Rs.126 per kg and Rs135perKg are mixed with a third variety in the ratio 1 : 1 : 2. If the mixture is worth Rs 153 per Kg, then the price of the third variety in per Kg is a. Rs. 170a. Rs. 170b. Rs. 175.50c. Rs. 145d. Rs.165.50
17.	Given that $x = at^2$ and $y = 2at$, then $\frac{d^2y}{dx^2}$ is a. $2at^3$ b. $-\frac{1}{2at}$ c. $-\frac{1}{2at^3}$ d. $-\frac{1}{t^2}$

18.	A machine costing ₹ 50,000 has a useful life of four years the estimated					
	a \neq 20000 b \neq 12000 cm the annual depreciation is $c \neq 10000$ d $\neq 5000$					
19.	Assertion A: Selection of football team for FIFA world cup is an example of					
	Purposive sampling.					
	Reason R: A purposive sampling is done based on the characteristics of the					
	population and is not random so we can select a better team not by chance					
	but by characteristics.					
20.	Assertion A : If a is any positive real number, then $a + \frac{1}{2} > 2$					
	Reason R : Let a and b be distinct positive real numbers then $\frac{a+b}{a} > \sqrt{ab}$					
21.	Evaluate: $\int \frac{2}{1+ x-2 } dx$ OB $\int \int \frac{3}{ x-1 } \frac{1}{ x-2 } dx$					
22	Find the superstructure of a new structure of \overline{F} 2120 news has a table to a single of \overline{F}					
22.	Find the present value of a perpetuity of \gtrless 3120 payable at the beginning of each year, if money is worth 6% effective.					
23.	Find the particular solution of the differential equation,					
	$(\log x) \sqrt{4 + y^2} dx + \frac{1}{y} dy = 0$, given that, at x = 1, y = 0.					
24.	A money lender charges interest at the rate of ₹10 per ₹100 per half year,					
	payable in advance. What effective rate of interest does he charge per					
	annum?					
	OR					
	M/s JBC Earthmovers was founded on 2018-2019 2019-2020 2020-21					
	April 1, 2018 by a RK Sharma. The					
	revenue numbers for firm are shown in ₹300000 ₹ 250000 ₹ 550000					
	the adjacent table. Find the compound					
	annual growth rate of the company.					
	Given: $(1.833)^{\frac{1}{3}} = 1.2239$					
25.	A dietician has to develop a special diet using two foods P and Q. Each packet					
	(containing 30 g) of food P contains 12 units of calcium, 4 units of iron, 6					
	units of cholesterol and 6 units of vitamin A. Each packet of the same					
	quantity of food Q contains 3 units of calcium, 20 units of iron, 4 units of					
	choiesterol and 3 units of vitamin A. The diet requires atleast 240 units of					
	Formulate the linear programming to maximize the amount of vitamin A in					
	the diet stating the objective function and the constraints					
26.	Two pipes A and B can fill a tank in 12 minutes and 15 minutes respectively,					
	while a third pipe C can empty the full tank in 20 minutes. All the three pipes					
	are opened in the beginning, but pipe C is closed 6 minutes before the tank is					
	filled in what time will the tank be full.					
27.	Consider two families A and B. Suppose there are 4 men, 4 women and 4					
	children in family A and 2 men, 2 women and 2 children in family. The					
	recommend daily amount of calories is 2400 for a					
	man, 1500 for a woman, 1000 for a child and that of protein is 45 grams for a man, 55 grams for a woman and 33 grams for children.					
	Based on the above information, answer the following questions.					
	a) Represent the requirement of calories and proteins for each person in matrix					
	form.					
	b) Evaluate the requirement of calories of family A using matrix algebra.					

	OR Given the following equations for two related markets A and B, find the equilibrium conditions for each market and the price for each by Cramer's rule: $x_d(A) = 82 - 3 p_A + p_B$ $x_s(A) = -5 + 15 p_A$ $x_d(B) = 92 + 2 p_A - 4p_B$ $x_s(A) = -6 + 32 p_B$ where x_d and x_s denotes the quantity demanded and quantity supplied						
20	respectively and p_A and p_B represents the price for each market.						
20.	inhabitants present at any time t, if the population of city was 200000 in 1990 and 250000 in 2000.						
	i) Find the population in 2010.						
29.	Assuming that half the population are consumers of chocolate so that the chance of an individual being a consumer is $\frac{1}{2}$ and if 100 investigators each take 10 individuals to see whether they are consumers. How many investigators would you expect to report that 3 people or less were						
	OR						
	The probability that a man aged 50 years will die within a year is 0.01125. What is the probability that out of 12 such men at least eleven will reach their 51st birthday? Given: $e^{-0.315} = 0.87371$						
30.	Hole punching machine is set to punch a hole 1.84 cm in diameter in a strip of sheet metal in a manufacturing process. The strip of metal is then creased and sent on to the next phase of production, where a metal rod is slipped through the hole. It's important that the hole be punched to the specified diameter of 1.84 cm. To test punching accuracy, technicians randomly sampled 16 punched holes and measured the diameters. The sample data (in centimeters) has a mean of 1.85 and variance 0.0064. Set up null and alternate hypothesis to test if the machine is working properly (whether the holes are being punched an average of 1.84 centimeters), at an alpha level of 0.05. Assume the punched holes are normally distributed in the population. Given: $t_{0.05,15} = 2.131$						
31.	A person has set up a sinking fund to have ₹100,000 after 10 years for his children's college education. How much amount should he set aside annually into an account paying 5% per annum compounded half yearly. Given: $1.025^{20} = 1.6386$						
32.	A company has approximated the marginal cost and marginal revenue functions for one of its products by MC = $81 - 16x + x^2$ and MR = $20x -2x^2$ respectively. Determine the profit maximizing output and the total profit at the optimum output, assuming fixed cost as zero. OR						
	The demand and supply functions for commodities are $p = 16 - 6x + x^2$ and						
	$p = 4 + \frac{4}{3}x + \frac{1}{3}x^2$ respectively. Find each of the following assuming $x \le 5$, i) the equilibrium point						
	ii) the consumer's surplus at the equilibrium point iii) the producer's surplus at the equilibrium point						

33.	Shanaia takes a loan of ₹ 5,00,000 from a bank at the interest rate of 6%									
	per annum f	or 10 ye	ears she	wants to	pay	[,] back	the loan	in equate	d monthly	y
	installments.	Find he	er EMI b	y using						
	i) flat rate n	nethod		, .						
	ii) reducing t	balance	method	given tha	at (1	$.005)^{-1}$	120 = 0.549	96		
				-		Ο	R			
	Jayant amor	tizes a l	oan of	₹15,00,00)0 fo	or ren	ovation o	f his hous	e by 8	
	years mortga	age at t	he rate	of 12% pe	er a	nnum	compoun	ided mont	thly. Find	
	i) the equate	ed mont	hly insta	allment.						
	ii) the principa	al outsta	nding at	the begini	ning	of 40t	h month	_	-	
	iii) the interes	st paid in	the 40tl	h month. [Give	<u>en (1.0</u>	$1)^{96} = 2.59$	$933, (1.01)^5$	$p^{7} = 1.7633$;.]
34.	A Company	produce	s three	products	evei	ry day	. Their pr	oduction	on a certa	ain
	day is 45 tor	ns. It is	found th	hat produc	ctior	n of th	e third pr	oduct exe	ceeds the	
	production o	f first pi	roduct b	y 8 tons v	while	e the	total prod	luction of	first and	
	third product	t is twic	e the pr	oduction	of tr	ne sec	ond prod	uct. Deter	mine the	
25	production le		each pro	auct using	g m	atrix i	nversion	method.	U	
35.	Fit a straight	the tre	end by t	ne metho	as c	or leas	t squares		nowing aa	ita
		e the tre	end valu	e for 202.	2. A	iso pic	ot the trei	na on the	graph	
	Voar	2012	2014	2015	2	016	2017	2018	2010	1
	Production	2013	2014	02	2	83 010	2017	2010	2019	
	in	00	50	52		00	74		52	
	thousands									
36		itical co	mnany							L
50.	manufacture	s two d	ruas - d	rug A and	1					
	drug B The	nrocess	involve	s two ster	้าร		()		· · · · ·	1
	- synthesis a	nd testi	ing. Fac	h lot of dr	านต		10	たい意用		
	A requires 1	5-man ł	nours for	r svnthesi	S		d	or =	1	
	and 3-man h	ours fo	r testina	. Each lot	of	1.14	26. Q			
	drug B regui	res 5-m	an hour	s for					· ····································	(
	synthesis an	d 2-mai	n hours	for testing	g.		10		N PA	a)
	For synthesiz	zing and	d testing	, the		24			100	ĩ
	maximum m	an hour	s availa	ble per		180	6 - Deg			61
	week are 39	0 and 2	4 respec	ctively. Th	e	12	5 /2 F		- 1	
	company ma	ikes a p	rofit of I	Rs 3500 o	n	100	Call Street			
	each lot of d	rug A ai	nd Rs 80	000 on ea	ch	1	P 11		AI I	81
	lot of drug B							11		2
	i) Formulate the linear programming							Charles 1		
	problem.				÷		9			
	ii) Represent the constraints on the									
	graph depicting the feasible region.									
	iii) Using corner point method find out				t					
	how many lots of drug A and drug B									
	should be manufactured each week to									
	паке а тах	imum p	rotit							
		U ofit mot	r r had find	out how						
	many lote of	drug A	nou iiiiu and dru		Ч					
	he manufact	ured es		r to make	u a					
		ureu ed ofit	CII WEEK		a					
	i naxiniuni pr	UIIL								

37.	 In a fighter jet training program entrance test the scores can be modelled using a normal distribution with a mean of 80 and standard deviation 4. i) Find the probability of candidates scoring between 72 and 84. ii) Find the minimum score (rounded off to integer) necessary to get on the program if it takes only the top 2.5% of candidates on a test. 				
38.	Given: $P(z > -1.96) = 0.975$ 3. In mathematics modular arithmetic is a system of arithmetic for integers where numbers" wraparound" when reaching a certain value called modulus. A familiar use of modular arithmetic is in the 12-hour clock in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in 7+8=15, but clocks "wrap around" every 12 hours. Because the hour number starts over after it reaches 12, this is arithmetic modulo 12. In terms of the definition,15 is congruent to 3 modulo 12. So 15:00 on a 24-hour clock is displayed 3:00 on a 12-hour clock. Further to the above information answer the following questions. (a) Evaluate (123 x 217 x 365) mod11 (b) What is the least positive of x for which $100 \equiv x(mod7)$ (c) Evaluate ($7^{291} \times 6^{500}$) mod 10OR Find the last digit of $2^{100} + 100!$				